日期:2021-05-18 18:26:30作者:善利信息科技图片:未知人气:+
男生追女生,对男生来说最重要的是学习、爱情两不误。因此我们引进男生的学业成绩函数Y(t)。
首先,我们不考虑男生的追求攻势,则影响该函数的因素主要是两个人的关系程度。为了便于分析,我们将两人的关系简化为女生对该男生的疏远度,于是引入疏远度函数X(t)。
问题就转化为求解Y(t)和X(t)的相互作用关系。利用微分,很容易就可以求出两者的关系。但现实中男生可能会对该女生发起一轮轮的追求攻势,因此还要考虑到追求攻势对模型的影响。而追求攻势又与女生的疏远度有关,可以简化地将两者看成是正比关系。将追求攻势加入到模型中,就可以找出攻势与Y(t)和 X(t)的关系了。
由假设4和假设5,就得到了学业与疏远度在无外界干扰的情况下互相作用的模型:
{dX(t)/dt=aX-bXY;dY(t)/dt=cXY-eY} 其中c=αb. (1)
这是一个非线性自治系统,为了求两个数X与Y的变化规律,我们对它作定性分析。令{aX-bXY=0;cXY-eY=0} 解得系统(1)的两个平衡位置为:O(0,0),M (e/c,a/b)。从(1)的两方程中消去dt,分离变量可求得首次积分:
F(X,Y)=cX-dln|X|-aln|Y|=k (2)
容易求出函数F(X,Y)有唯一驻点为M(e/c,a/b)。再用极值的充分条件判断条件可以判断M是F的极小值点。同时易见,当X→∞(B女对A君恨之入骨)或Y→∞ (A君是一块只会学习的木头)时均有F→∞;而X→0(A君作了变形手术,B女对他毫无防备)或Y→0(A君不学无术,丝毫不学习)时也有F→∞。
由此不难看出,在第一象限内部连续的函数z=F(X,Y)的图形是以M为最小值点,且在第一卦限向上无限延伸的曲面,因而它与z=k(k>0)的交线在相平面 XOY的投影F(X,Y)=k (k>0)是环绕点M的闭曲线簇。这说明学业成绩和疏远度的指数成周期性变化。
从生态意义上看这是容易理解的,当A君的学习成绩Y(t)下降时,B女会疏远 A君,疏远度X(t)上升;于是A君就又开始奋发图强,学习成绩Y(t)又上升了。于是B女就又和A君开始了来往,疏远度X(t)又下降了。与B女交往多了,当然分散了学习时间,A君的学习成绩Y(t)下降了。
然而我们可证明,尽管闭轨线不同,但在其周期内的X和Y的平均数量都分别是一常数,而且恰为平衡点M的两个坐标。事实上,由(1)的第二个方程可得: dY/Ydt=cX- e,两端在一个周期时间T内积分,得:
∫(dy/Ydt)dt=c∮Xdt-dT (3)
注意到当t经过一个周期T时,点(X,Y)绕闭轨线运行一圈又回到初始点,从而:∫(dY/Ydt)dt=∮dY/Y=0。所以,由(3)式可得: (∫Xdt)/T=e/c。
同理,由(1)的第一个方程可得:(∫Ydt)/T=a/b。
考虑到追求攻势对上述模型的影响。设追求攻势与该时刻的疏远度成正比,比例系数为h,h反映了追求攻势的作用力。在这种情况下,上述学业与疏远度的模型应变为:
{dX/dT=aX-bXY-hX=(a-h)X-bXY;dY/dt=cXY-eY-hY=cXY-(e+h)Y} (4)
将(4)式与(1)式比较,可见两者形式完全相同,前者仅是把(1)中X与Y的系数分别换成了a-h与e+h。因此,对(4)式有
x’=(∫Xdt)/T=(e+h)/c,y’=(∫Ydt)/t=(a-h)/b (5)
利用(5)式我们可见:攻势作用力h的增大使X’增加,Y’减少。
考试期间,由于功课繁忙,使得追求攻势减少,即h减小,与平时相比,将有利于学业成绩Y的增长。这就是Volterra原理。 此原理对男生有着重要的指导意义:强大的爱情攻势有时不一定能达到满意的效果,反而不利与学业的成长;有时通过慢慢接触,慢慢了解,再加上适当的追求行动,女生的疏远度就会慢慢降低。学习成绩也不会降低!
本站所发布的文字与图片素材为非商业目的改编或整理,版权归原作者所有,如侵权或涉及违法,请联系我们删除,如需转载请保留原文地址:http://www.gzkyz.com.cn/article/35051.html
善利信息科技
倾诉你的情感,分享属于你们的故事Copyright 2005-2020 www.gzkyz.com.cn 【可可情感网】 版权所有 | 湘ICP备20010517号
声明: 部分信息与图片素材来源于互联网,如内容侵权与违规,请与本站联系,将在三个工作日内处理,互联网不良信息举报邮箱:*****@qq.com